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The first passage times for enzymatic turnovers in nonequilibrium steady state display a statistical symmetry
property related to nonequilibrium fluctuation theorems, which makes it possible to extract the chemical
driving force from single molecule trajectories in nonequilibrium steady state. Below, we show that the number
of decay constants needed to describe the first passage time distribution of this system is not equal to the
number of states in the first passage problem, as one would generally expect. Instead, the structure of the
kinetic mechanism makes half of the decay times vanish identically from the turnover time distribution. The
terms that cancel out correspond to the eigenvalues of a certain submatrix of the master equation matrix for the
first exit time problem. We discuss how these results make modeling and data analysis easier for such systems,
and how the turnovers can be measured.
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Enzymes are vital to most biochemical reactions, to in-
crease reaction speed and as active components in cellular
regulatory networks. Observations of the fluctuations on the
single molecule level can lead to new insights into enzymatic
mechanisms by revealing more detailed information than en-
semble averages measured in bulk experiments �1–7�. The
rapid development in single-molecule techniques has made it
possible to directly observe turnover events of single en-
zymes in many systems �see, e.g., Ref. �8� and references
therein�. This motivates continuing theoretical interest in sto-
chastic kinetics. For example, it was recently shown how
nonequilibrium fluctuation theorems make it possible to ex-
tract the chemical driving force from turnover traces of
single enzymes �4,5�.

Here we consider the statistical properties of reversible
enzymatic turnovers, and derive another useful property of
the turnover times. Their distribution is a sum of exponen-
tially decaying terms, and the number of terms is usually
expected to reflect the number of states in the underlying first
passage problem. We show that the number of terms in the
actual distributions is only half of the expected number, due
to the periodicity of the problem. Moreover, we discuss an
earlier suggestion �4� of how to detect turnover events, and
conclude that it does not correspond to the first passage prob-
lem for turnover times. We have previously addressed an
analogous issue for stepping motor proteins, and shown that
it can lead to systematic misinterpretations of experimental
data �6,7�. Our results point to modifications in previously
suggested experiments, and also simplify theoretical analysis
of turnover time distributions.

In the next section, we introduce our model and the re-
sults. After that, we discuss how turnover times can be de-
tected in reversible single-molecule experiments. We then
derive our main result. Finally we discuss some implications.

MODEL

Following Qian and Xie �4�, we start with a simple se-
quential kinetic model of an enzyme reaction, sketched in

Fig. 1�a�, where a substrate A is converted to a product B
through several intermediate states. The overall concentra-
tions of substrate and product molecules are assumed to be
kept constant, so that a nonequilibrium steady state is main-
tained.

As sketched in Fig. 1�b�, a � turnover is defined as the
first arrival in one of the empty states E�n, after a start in
state E0. Thus, the turnovers are equivalent to the cycle
completion events associated with the work of Hill �9�. If a
turnover is completed at t=0, the integrated turnover time
distribution w��t� is the probability that the next turnover is
a �, and occurs at time t or earlier. Microscopic reversibility
leads to a symmetry property for the forward ��� and back-
ward ��� turnover times �10�, namely, w+�t�=e��/kBTw−�t�
�3,4�. Here, ��

kBT =ln
m10m21¯mn,n−1

m01m12¯mn−1,n
is the chemical driving force,

and mij is the rate of the transition Ej→Ei.
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FIG. 1. �a� A multistep enzyme reaction converting A to B. The
turnover time distributions w��t� are given by the first exit time
problem in �b�. The enzyme starts in state E0 and is absorbed in En

or E−n. The rate constants m10 and mn−1,n are pseudo-first-order, i.e.,
proportional to the concentrations of A and B, respectively. In the
more general scheme studied in Ref. �3�, arbitrary transitions within
a cycle are allowed. An example of this, with n=5 different enzy-
matic states, is illustrated in �c�. By periodicity, state Ek is equiva-
lent to Ek+n, and mij =mi+n,j+n.
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The turnover time distributions are of the general form

w��t� = �0
� + �

k=1

N

�k
�e�kt. �1�

The characteristic decay times �k=−1 /�k and prefactors �k
�

depend on the transition rates and topology of the underlying
kinetic mechanism. Hence, this mechanism can be studied by
fitting theoretically predicted distributions to experimental
data.

The underlying first passage problem is governed by a
system of linear master equations �11�, one equation for each
state from which the systems escapes. Since one generally
expects a matrix of dimension N to have N eigenvalues, a
simple and common way to estimate the number of states is
to count how many exponential terms are needed to fit the
first passage time distribution. As illustrated in Fig. 1, the
turnover events correspond to escape events from states E1−n,
E2−n , . . . ,En−1. Hence, the number of states in the first pas-
sage problem is N=2n−1 in this case, where n is the number
of intermediate states of the enzyme-substrate complex. As
shown below, the structure of this first passage problem, as
well as the more general one studied by Wang and Quan �3�,
makes n−1 of the coefficients �k

� in w��t� vanish. This
leaves only n terms in the distribution, i.e., the above esti-
mate fails by a factor 2. Before we derive this, we discuss
how turnover times can be detected in reversible single mol-
ecule experiments.

DETECTING ENZYMATIC TURNOVERS

Single enzyme experiments using fluorescence techniques
often probe the state of an enzyme-substrate complex
�12–15�, but do not report directly on the number of turn-
overs. In our example model, a realistic possibility is that the
empty states �E0 ,E�n , . . . � can be experimentally distin-
guished from the other states, but not from each other. If the
product concentration is kept very low, it is safe to assume
that each departure from an empty state starts a new forward
turnover. However, detecting individual forward and back-
ward turnovers in conditions where backward turnovers are
possible is more complicated, as the following discussion
will show.

In their proposal to measure �� directly from turnover
traces, Qian and Xie �4� suggested that individual turnover
times could be measured by monitoring the net number 	B�t�
of product molecules, as they are released and absorbed by
the reaction En−1�En. However, this is equivalent to moni-
toring the position of a processive motor protein. A closer
examination reveals that this situation corresponds to a dif-
ferent first passage problem, with quite different statistical
properties. This discrepancy can lead to large systematic er-
rors in the estimate for �� �6,7�.

To see why that measurement will not detect turnovers,
note that the turnover event starts in state E0 and finishes
when an enzymatic cycle is completed, i.e., when either En
or E−n is reached for the first time �2–4�. However, 	B�t�
does not change during the reaction E1−n→E−n. Therefore,

backward turnovers cannot be detected by only monitoring
changes in 	B.

The attractive statistical properties of turnover times �3–5�
motivate a consideration of how they could be measured,
using slightly different experimental setups. One possibility
would be to monitor both substrate and product molecules,
but one could also imagine various setups involving fluores-
cence techniques with multiple fluorescence levels, in the
spirit of the experiment that demonstrated bidirectional rota-
tion in ATP synthase �16�. To summarize, it is important to
make sure that the theoretical first passage problem describes
the actual experimental situation.

NUMBER OF DECAY TIMES IN w±(t)

We now derive our main result, i.e., that the number of
exponential terms in the turnover time distributions w��t� are
not given by the number of states in the first passage prob-
lem, 2n−1, as one might expect �4�. Instead, w��t� only
contains n terms. The decay constants that drop out are the
eigenvalues of a certain submatrix of the master equation
matrix for the first exit time problem. This result may sim-
plify practical calculations considerably.

The turnover times studied by �4� are the solutions of the
first exit problem illustrated in Fig. 1�b�. If we label the
states −n ,−n+1, . . . ,n−1,n, the system starts in state 0 and
is absorbed in states �n. Let qk�t� be the probability of being
in state k a time t after starting in state 0. The qk�t� are
governed by the master equation

�t qi�t� = �
j�i

�mijqj�t� − mjiqi�t��, − n 
 i 
 n , �2�

with initial condition qj�0�=� j,0. Since �n are absorbing
states, the integrated turnover time distribution functions are
given by

w��t� = q�n�t� = �
0

t dq�n�t�
dt

dt = �
j=1−n

n−1

m�n,j�
0

t

qj�t�dt . �3�

Note that w��t� are not normalized to unity. Instead, the
fractions p� of � turnovers are given by p�=limt→�w��t�.
Introducing the matrix M and vector q��t� with elements

Mij = mij − �ij �
k=1−n

n−1

mik, − n 
 i, j 
 n , �4�

q��t� = �q−n+1�t�,q−n+2�t�, . . . ,qn−1�t��T, �5�

the solution of Eq. �2� can be written q��t�=etMq��0�.
We restrict our attention to the generic situation in which

M can be diagonalized �17�. In this case, q��t� can be ex-

pressed in terms of right and left eigenvectors a� �k� and b� �k� of
M, namely,

q��t� = �
k=1

2n−1

et�ka� �k��b� �k� · q��0�� . �6�

Note that the eigenvalues �k need not all be distinct �18�.
Among the 2n−1 terms, we look for left eigenvectors b� �k�
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that are orthogonal to the initial condition q��0�. Those terms
drop out of Eq. �6�, and hence from w��t� as well. We intro-
duce

y�+ = �m1−n,0, . . . ,m−1,0�T, y�− = �m1,0, . . . ,mn−1,0�T,

v�+ = �m0,1−n, . . . ,m0,−1�T, v�− = �m0,1, . . . ,m0,n−1�T, �7�

b�−
�k� = �b1−n

�k� ,b2−n
�k� , . . . ,b−1

�k��T, b�+ = �b1
�k�,b2

�k�, . . . ,bn−1
�k� �T,

and take Y as the �n−1� �n−1� matrix with elements Yij
=Mij for 0
 i , j
n, i.e., the master equation matrix for the
first exit problem from states 1 ,2 , . . . ,n−1. Using the peri-
odicity of the transition rates, mi,j =mi+n,j+n, and a “bottle-
neck” property of state 0, mi,j−n=mj−n,i=0 for 0
 i , j
n, the
left eigenvalue problem for M can be written

MTb� �k� = �YT y�− 0

v�−
T M00 v�+

T

0 y�+ YT ��b�−
�k�

b0
�k�

b�+
�k� � = �kb�

�k�, �8�

where 0 is the �n−1� �n−1� zero matrix. This structure of
M also holds for the more general turnover time problem
studied in Ref. �3� and illustrated in Fig. 1�c�. For the se-
quential model of Fig. 1�b�, studied in Ref. �4�, M and Y are
tridiagonal, in which case y��, v�� have only one nonzero

element each. Setting b� �k� ·q��0�=b0
�k�=0 in Eq. �8� gives

YTb�−
�k� = �kb�−

�k�, �9�

v�− · b�−
�k� + v�+ · b�+

�k� = 0, �10�

YTb�+
�k� = �kb�+

�k�. �11�

The solutions are given by the eigenvalues of YT, which are
also eigenvalues of M. Since these have equal algebraic and
geometric multiplicity by assumption, there are n−1 solu-
tions, corresponding to terms that do not contribute to the
turnover time distributions in Eq. �6�. Hence, w��t� contains
at most n exponential terms: those where �k is an eigenvalue
of M, but not of Y.

APPLICATION TO THE SEQUENTIAL MODELS

Analytical expressions for the turnover time distributions
are useful for efficient parameter extraction. Our result for
the number of exponential terms in w��t� makes the deriva-
tion of such expressions easier, and extends the range of
system sizes that can be treated analytically.

To illustrate this, we analyze the sequential model in Fig.
1�a�, using the ansatz

w��t� = p��1 + �1e�1t + ¯ + �ne�nt� , �12�

with �k=�k
� / p�, together with the initial conditions for

w��t�. As shown by Qian and Xie �4� �their Ref. �24��, the
sequential models satisfy p�

−1w��0�=1+�k�k=0 and
p�

−1�t
mw��0�=�k�k

m�k=0 for 1�m�n−1. This leads to a
Vandermonde-type system of equations,

�
1 1 ¯ 1

�1 �2 ¯ �n

] ] � ]

�1
n−1 �2

n−1
¯ �n

n−1
��

�1

�2

]

�n

� = �
− 1

0

]

0
� . �13�

Solving with Cramer’s rule for the normalized distribution
p�

−1w��t�, we get

p�
−1w��t� = 1 + �− 1�n�

k=1

n

e�kt 	
m�k


 �m

�k − �m
� . �14�

This is the distribution of a sum N of independent exponen-
tial random variables with mean values
��1�−1 , ��2�−1 , . . . , ��n�−1. The reduced number of unknown co-
efficients �k simplifies the analytical computation signifi-
cantly, especially so for sequential models, where �k�k

m�k
�0 for m�n �4�.

Analytical calculation of the eigenvalues �k means finding
the roots of a characteristic polynomial. �For large systems,
the eigenvalues must be found numerically. In these cases,
root-finding in the characteristic polynomial is usually not
the best method �19�.� Since the n−1 noncontributing time
constants are the eigenvalues of Y, these can be removed
from the eigenvalue equation in advance, hence reducing the
problem from root-finding in the characteristic polynomial of
M, PM���=det�M−�I�, which has degree 2n−1, to root-
finding in the polynomial PM��� / PY���, which has degree n.
This makes it feasible to compute decay constants analyti-
cally for larger systems.

CONCLUSION

We have demonstrated that enzymatic turnover times con-
stitute a counterexample to the expectation that the number
of states in a first passage time problem is equal to the num-
ber of exponential terms in the first passage time distribution.
Instead, the number of terms is in this case equal to the
number of states per cycle. This number is an important char-
acteristic of the kinetic mechanism of an enzyme, and our
results make it possible to estimate it correctly from time
series of turnover times.

Furthermore, our results make it easier to derive �semi�-
analytical expressions for the turnover time distributions,
thus simplifying modeling and data analysis. The approach
demonstrated above for a sequential model also works for
large systems, if the eigenvalues are computed numerically.
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Finally, we have supplied an important clarification to an
earlier suggestion �4� on how to detect turnover events. This
should make our results, together with earlier predictions
�3–5�, into useful analysis tools for future experiments, and a
further reason to study enzymatic turnovers under reversible
conditions.
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